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Abstract
The nonlinear dynamics of electric scooters are investigated using a spatial mechanical
model. The equations of motion are derived with the help of Kane’s method. Two control al-
gorithms are designed in order to balance the e-scooter in a vertical position at zero forward
speed. Hierarchical, linear state feedback controllers with feedback delay are considered. In
the case of a delay-free controller, the linear stability properties are analyzed analytically,
with the help of the Routh–Hurwitz criteria. The linear stability charts of the delayed con-
trollers are constructed with the help of the D-subdivision method and semi-discretization.
The control gains of the controllers are optimized with respect to the robustness against per-
turbations. The effects of the feedback delay of the controllers, the rake angle, the trail, and
the center of gravity of the handlebar on the linear stability are shown. The performance of
the control algorithms is verified by means of numerical simulations.

Keywords E-scooter · Multibody system · Kane’s method · Control with steering · Control
with driving · Nonlinear simulations

1 Introduction

Single-track vehicles such as motorcycles, bicycles, and electric scooters (so-called e-
scooters) became very popular in road transportation in the last decades. Vehicle stability,
especially the lateral dynamics of such multibody systems is of utmost importance. Al-
though motorcycles, bicycles, and e-scooters can be modeled with the same mechanical
model, they have different geometric features and characteristics.

On the one hand, the dynamics of motorcycles [5, 22, 28, 30–32, 34] and bicycles
[2, 6, 11, 13, 14, 17, 20, 25, 29, 35, 36, 40] have been investigated for a long time. There-
fore, experts in the field know a lot about the dynamic properties of these vehicles, both in
theoretical and practical aspects. On the other hand, the complex structure of the geometric
and kinematic constraints of the spatial mechanical model provides a set of nonlinear differ-
ential equations that cannot be managed analytically. Hence, most of the literature focuses
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on the semi-analytical and/or numerical stability analysis, and often small vibrations are
investigated (i.e., linear stability analysis is carried out).

The benchmark model of bicycles with constant forward velocity has been introduced in
[17]. It was shown that the bicycle is self-stable within a velocity range, i.e., between the
so-called weave speed and the capsize speed. For a long time, it was believed that this self-
stability is correlated to gyroscopic and caster effects. However, based on [14], neither the
gyroscopic precession of the front wheel nor a positive trail is necessary for self-stability. In
contrast, geometric properties like the front-assembly mass distribution or the rake angle of
the bicycle play a relevant role in self-stability. Besides the investigation of the dynamics of
uncontrolled bicycles, control strategies for path-tracking [6], fuzzy control for equilibrium
and roll angle tracking [4], human control of a bicycle considering reaction time [16], and
the optimal handling of a bicycle [21] have also been studied recently.

As a possible solution for the first and last mile problem in our modern road transport,
e-scooters [12, 23] and electric unicycles [3] became fairly popular. The growing number of
sharing companies enabled the spread of such micro-mobility vehicles. As a public trans-
port vehicle, e-scooters are easily available in many cities. In addition, they are relatively
small-sized, compact, and foldable. Since they are electric, they are considered green and
environmentally conscious. In contrast, they are often unstable in the legislated riding veloc-
ity range [23] and many e-scooter drivers are inexperienced. Therefore, plenty of accidents
happen due to falling off the e-scooter and/or collisions with other vehicles. In addition,
e-scooters are often scattered in the streets, since many people do not leave them in the
docking areas. With a proper design and profound knowledge of the dynamic behavior of
such multibody systems, the number of accidents could be reduced to a noticeable extent.

Our study focuses on the stability of a riderless, self-driving e-scooter, which can balance
itself in a vertical position. We propose that self-driving e-scooter at low speeds may be a
useful option for e-scooter sharing companies in the future to transport e-scooters to docking
stations or designated parking areas. As a first step, the balancing problem at zero forward
speed is analyzed in this study, which is a very complex task even for professional bicycle
riders. Besides linear stability analysis of the closed-loop system, the nonlinear governing
equations are also derived and nonlinear numerical simulations are performed. Nevertheless,
the time delay in the control algorithm is also taken into account.

The rest of the paper is organized as follows. The mechanical model, the geometric and
kinematic constraints, and the derivation of the nonlinear governing equations are summa-
rized in Sect. 2. Two linear feedback controllers with feedback delay are designed, linear
stability charts are constructed, and the effect of several parameters on the linear stability
properties are shown in Sect. 3. The control algorithms are verified by means of nonlinear
numerical simulations in Sect. 4. Conclusions are drawn in Sect. 5.

2 Modeling

2.1 Mechanical model

In our analysis, we consider an electric scooter rolling on the rigid flat ground. To describe
the motion of this vehicle, we use a spatial mechanical model that is based on the Whip-
ple bicycle model [39]. Namely, the multibody system consists of four rigid bodies (see
Fig. 1(a)): the front and the rear wheels, the body (i.e., the frame), and the handlebar (i.e.,
the handlebar and fork assembly). Subscripts f, r, b and h refer to these rigid bodies, respec-
tively. All four rigid bodies have six degrees of freedom (DoF) without constraints, leading
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Fig. 1 The spatial model of an electric scooter (e-scooter). (a) Axonometric view with the generalized coor-
dinates, angular velocities and reference frames. (b) Side view for ψ = 0, ϕ = 0, ϑ = 0 and δ = 0 with the
geometric parameters

to 24 DoF altogether. Each of the three hinges between the bodies constrains three transla-
tional and two rotational DoF. This means that the e-scooter has 24 − 3 · 5 = 9 DoF without
the consideration of the wheel-ground contacts.

The geometric parameters of the e-scooter can be seen in Fig. 1(b) in the nominal position
and orientation (the center planes of the body and wheels are vertical). Let us denote the
center points of the rigid wheels with F and R, and their single contact points with Q and
P, respectively. The distance between the front and the rear wheel contact points (i.e., the
wheelbase) is denoted by p. The trail e is the distance between the intersection point A of
the steering axis and the ground and the front contact point Q. A positive value of e refers
to towed front wheel (i.e., A is ahead Q), while a negative value of e corresponds to pushed
front wheel (i.e., A is behind Q). Note that in general cases, the trail is positive (e > 0), and
a negative trail (e < 0) is used only in special designs. The rake angle ε (also called steer
tilt or steering axis angle, see [12, 17]) is the angle between the vertical direction and the
steering axis.

In our model, we assume that the centers of gravity of the wheels are at the center points
F and R, respectively, and both wheels have the same radius R. However, we consider dif-
ferent mass and mass moment of inertia parameters for the wheels. Namely, the front wheel
(together with the hub motor in our case) has mass mf and mass moment of inertia tensor
JF, and the rear wheel has mass mr and mass moment of inertia tensor JR. The mass of the
body is mb and the mass moment of inertia tensor about its center of mass B is denoted by
JB. The handlebar and the fork assembly have mass mh and mass moment of inertia tensor
JH about its center of mass H. The assembly is joined to the body at the kingpin K. The
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fork length and fork offset are referred to b and d , respectively. The fork offset d can be
expressed as a function of the wheel radius, the trail, and the rake angle:

d = R sin ε − e cos ε . (1)

The spatial position of the multibody system consisting of the four rigid bodies can be
described by the X, Y and Z coordinates of point R, the yaw angle ψ , the lean angle ϕ,
the steering angle δ, the pitch angle ϑ , and the rotational angles φf and φr of the front and
the rear wheels around their own axes. Up to this point, the constraints related to the wheel-
ground contacts have not yet been taken into account; they are detailed in a later section.

In order to balance the e-scooter, we design two control algorithms. In the case of control
with steering, we try to balance the vehicle by applying internal steering torque Ms on the
handlebar. In the case of control with driving, we turn the front wheel into a π/2 steering
angle position and apply internal driving torque Md on the front wheel.

2.2 Coordinate frames

In our study, we define six frames. The ground-fixed global reference frame is referred to
F0 with the coordinate system (x0, y0, z0), with bases i0, j0 and k0. The other five reference
frames Fk are provided by means of subsequent angular rotations: with the yaw angle ψ

about the z0-axis, with the lean angle ϕ about the x1-axis, with the pitch angle ϑ about
the y2-axis. Hence, (x3, y3, z3), denoted by F3, is the body-fixed reference frame. To get
the reference frame of the handlebar and fork assembly, further two rotations are neces-
sary: with the rake angle ε about the y3-axis in the negative direction and with the steering
angle δ about the z4-axis. This provides the coordinate system (x5, y5, z5) denoted by F5.
The rotations (i.e., the transformation between the reference frames) can be expressed with
rotational/transformation matrices:

T0,1 =
⎡
⎣

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎤
⎦ , T1,2 =

⎡
⎣

1 0 0
0 cosϕ − sinϕ

0 sinϕ cosϕ

⎤
⎦ , (2)

T2,3 =
⎡
⎣

cosϑ 0 sinϑ

0 1 0
− sinϑ 0 cosϑ

⎤
⎦ , T3,4 =

⎡
⎣

cos ε 0 − sin ε

0 1 0
sin ε 0 cos ε

⎤
⎦ , (3)

T4,5 =
⎡
⎣

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

⎤
⎦ . (4)

With the help of these rotational matrices, a general expression for the transform of an
arbitrary vector r can be derived as

rFi
= Ti,j · rFj

, (5)

thus, the transform of a matrix J can be expressed as

JFi
= Ti,j · JFj

· TT
i,j , (6)
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Fig. 2 Positions of the wheels’ contact points in the wheel-aligned reference frames

where TT
i,j is the transpose of matrix Ti,j . The transformation between coordinate frames n

and m is a series of transformations:

Tn,m =
m−1∏
j=n

Tj,j+1 , (7)

where n < m.

2.3 Kinematics

In order to assume the wheel-ground contacts in the mechanical model, we summarize the
kinematics (geometrical relations, velocities and accelerations) of the e-scooter in this sec-
tion. Unfortunately, the mechanical model provides complicated formulas thanks to the com-
plex geometrical relations. Hence, at some points of the derivation, we limited our summary
to show the basic ideas of the calculations and we do not spell out the final formulas.

Let us start with the positions of the wheel-ground contact points. When the front wheel
of the e-scooter is steered about the tilted (in case of non-zero rake angle) kingpin, the body
is pitching and as a consequence, the relative positions of the front and rear wheels’ contact
points (Q and P) are changing in frames F5 and F3, respectively. Since these contact points
are located along the circumference of the wheels, the position vectors between the center
points of the wheels (F and R) and the contact points (Q and P) are

rFQ =
⎡
⎣

−R sin θf

0
−R cos θf

⎤
⎦

F5

, rRP =
⎡
⎣

R sin θr

0
−R cos θr

⎤
⎦

F3

, (8)

respectively. The angles θf and θr are shown in Fig. 2. Using the fact, that the z0 coordinates
of the contact points are minimal, one can determine these angles in the following form:

θf = arctan

(
cos δ cosϕ sin(ε − ϑ) + sin δ sinϕ

cosϕ cos(ε − ϑ)

)
, θr = ϑ . (9)

Thus, the angle related to the front wheel has a complicated nonlinear dependence on the
lean, steering, pitch, and rake angles. On the contrary, the situation on the rear wheel is
simple: the position of the contact point can be parameterized by the pitch angle.
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To determine the velocities of the contact points, one has to define the state of velocity
of the rigid bodies included in the model. The angular velocity vector of the body can be
represented in frame F0 as

ωb = ψ̇

⎡
⎣

0
0
1

⎤
⎦

F0

+ ϕ̇ T0,1

⎡
⎣

1
0
0

⎤
⎦

F1

+ ϑ̇ T0,2

⎡
⎣

0
1
0

⎤
⎦

F2

=

=
⎡
⎣

cosψϕ̇ − sinψ cosϕϑ̇

sinψϕ̇ + cosψ cosϕϑ̇

ψ̇ + sinϕϑ̇

⎤
⎦

F0

.

(10)

Similarly, the angular velocity vector of the handlebar can be calculated as

ωh = ωb + δ̇ T0,5

⎡
⎣

0
0
1

⎤
⎦

F5

. (11)

The angular velocity vectors of the front and the rear wheels are determined by

ωf = ωh + φ̇f T0,5

⎡
⎣

0
1
0

⎤
⎦

F5

, ωr = ωb + φ̇r T0,3

⎡
⎣

0
1
0

⎤
⎦

F3

. (12)

The velocity of the center point of the rear wheel R can be calculated as the time deriva-
tive of the position vector rR in the ground-fixed F0 reference frame:

vR = ṙR , (13)

where

rR = [
X Y Z

]T

F0
. (14)

The velocities of the kingpin (K) and the centers of gravity (B, H, F) of the other three rigid
bodies can be expressed by means of transport formulas as

vK = vR + ωb × rRK , (15)

vB = vR + ωb × rRB , (16)

vH = vK + ωh × rKH , (17)

vF = vK + ωh × rKF . (18)

The components of the necessary position vectors in Eqs. (15)-(18) can be given with the
geometric parameters and by defining the centers of gravity of the body and the handlebar.
Based on Fig. 1(b), the position vector to the kingpin K can be expressed as

rRK =
⎡
⎣

p − b sin ε − d cos ε

0
b cos ε − d sin ε

⎤
⎦

F3

, (19)
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and the position vector from the kingpin K to the center point of the front wheel F can be
given in the handlebar-fixed reference frame F5 as

rKF = [
d 0 −b

]T

F5
. (20)

We assume that the center of gravity of the body is known and can be given in the body-fixed
reference frame F3 as

rRB = [
xRB 0 zRB

]T

F3
. (21)

The center of gravity of the handlebar is also known and can be given in the handlebar-fixed
reference frame F5 as

rKH = [
xKH 0 zKH

]T

F5
. (22)

Using the above-derived formulas, one can calculate the velocity vectors of the front and
the rear contact points:

vQ = vF + ωf × rFQ , (23)

vP = vR + ωr × rRP . (24)

In the next subsection, these formulas are used for the definitions of the kinematic constraints
of rolling.

2.4 Constraints related to the wheel-ground contacts

In our investigation, the front and the rear wheels are attached to the ground, leading to two
additional geometric constraints in the system. Namely, the vertical components (rz0

Q and
r

z0
P ) of the front and the rear contact points (Q and P) in the ground-fixed reference frame F0

are zeros:

rQ · k0 =: rz0
Q = 0 , (25)

rP · k0 =: rz0
P = 0 . (26)

These nonlinear algebraic equations reduce the number of generalized coordinates that are
required to describe the motion of the e-scooter. Intuitively, one can use Eq. (26) to eliminate
coordinate Z as

Z = R cosϕ , (27)

and using this in Eq. (25) allows us to suppress the pitch angle ϑ as a function of the lean
and the steering angles. Namely, Eq. (25) provides a quartic equation for sinϑ , which can be
analytically solved, as shown in [24, 26, 40]. Since this analytical solution can make further
calculations very complicated, the so-called dynamic inclusion is often used, see [24].

The constraint equation (25) is manifested by the surface in Fig. 3(a) for a parameter
setup based on the literature [12] (see the parameter values in Table 1). As it can be seen,
the pitch angle is quite small even if the handlebar is steered extremely (i.e., δ = ±π/2) and
the lean angle is moderate, which is also shown in [20].

We assume that the wheels roll purely on the flat ground. This assumption manifests
in kinematic constraining equations for the front and rear contact points. Altogether, four



H.Z. Horvath, D. Takacs

Fig. 3 (a) The surface corresponding to the geometric constraint of Eq. (25), (b) the exact and the approx-
imate surfaces (corresponding to Eqs. (25) and (47), respectively) representing the relation within the lean,
the steering and the pitch angles in case of control with steering, (c) the exact and the approximate curves
(corresponding to Eqs. (25) and (68), respectively) representing the relation within the lean and the pitch
angles in case of control with driving (color figure online)

scalar kinematic constraining equations can be formulated for the two wheels (the velocity
components in the ground plane are zeros):

vQ · i0 =: vx0
Q = 0 , vQ · j0 =: vy0

Q = 0 ,

vP · i0 =: vx0
P = 0 , vP · j0 =: vy0

P = 0 .
(28)

Thus, the system is non-holonomic and the derivation of the governing equations needs
special attention, as also discussed in [27], where the Appellian approach is in focus. Here,
we use Kane’s method [10], which was developed later using the same concept of pseudo
velocities.

2.5 Kane’s method

As formerly explained, each of the three hinges between the rigid bodies constrains five DoF
and the wheel-ground contacts lead to two additional geometric constraints. Therefore, we
have 3 · 5 + 2 = 17 geometric constraint equations. This means that the configuration space
is 24 − 17 = 7 dimensional, i.e., one has to choose seven generalized coordinates. Let us
choose the coordinates X and Y of the center point R of the rear wheel, the yaw angle ψ ,
the lean angle ϕ, the steering angle δ, and the rotational angles φf and φr of the front and the
rear wheels around their own axes, see Fig. 1. Thus, the vector of generalized coordinates is

q = [
X Y ψ ϕ δ φf φr

]T
. (29)

The kinematic constraining equations formulated in Eq. (28) can be written as

Aq̇ = 0 , (30)

where the coefficient matrix A is

A =

⎡
⎢⎢⎣

1 0 A13 A14 A15 A16 0
0 1 A23 A24 A25 A26 0
1 0 A33 A34 A35 0 A37

0 1 A43 A44 A45 0 A47

⎤
⎥⎥⎦ . (31)
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Using Kane’s method [10], one has to choose so-called pseudo velocities. On the one
hand, this is an intuitive choice; on the other hand, a unique system description must be
provided. In addition, the complexity of the governing equations depends significantly on
this choice. The number of pseudo velocities is equal to the difference between the number
of the generalized coordinates and the number of kinematic constraints, i.e., 7 − 4 = 3 in
this study. Let us choose the lean rate ϕ̇, the steering rate δ̇ and the angular velocity of the
front wheel φ̇f as pseudo velocities. That is, the vector of pseudo velocities is

σ = [
σ1 σ2 σ3

]T := [
ϕ̇ δ̇ φ̇f

]T
. (32)

This can be written in matrix form as

Bq̇ = σ , (33)

where the coefficient matrix B has the form

B =
⎡
⎣

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤
⎦ . (34)

The kinematic constraints and the definitions of the pseudo velocities form a system of linear
algebraic equations:

[
A
B

][
q̇
] =

[
0
σ

]
, (35)

namely

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 A13 A14 A15 A16 0
0 1 A23 A24 A25 A26 0
1 0 A33 A34 A35 0 A37

0 1 A43 A44 A45 0 A47

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẋ

Ẏ

ψ̇

ϕ̇

δ̇

φ̇f

φ̇r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
σ1

σ2

σ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

In order to have a unique solution for the generalized velocities q̇k , the coefficient matrix C
has to be non-singular, i.e., det C �= 0. The pseudo velocities are chosen so that this criterion
is fulfilled.

The Kane equations can be written as

Fj + Fj
∗ = 0 , j = 1,2,3 , (37)

where

Fj =
∑

i∈{bodies}

(
Fi · ∂vi

∂σj

+ Mi · ∂ωi

∂σj

)
, (38)

Fj
∗ = −

∑
i∈{bodies}

(
miai · ∂vi

∂σj

+ (Jiεi + ωi × (Jiωi )) · ∂ωi

∂σj

)
. (39)
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Here, ai = v̇i are accelerations of the centers of gravity (B, H, F, R), εi = ω̇i are the angular
accelerations of the bodies, Fi are the active forces and Mi are the torques on body i. The
active forces on the rigid bodies are the gravitational forces:

Fi = [
0 0 −mig

]T

F0
, i ∈ {b,h, f, r} , (40)

where g is the gravitational acceleration.
As a first approach, we try to balance the e-scooter by even applying internal steering

torque M s on the handlebar (control with steering) or by driving the front wheel with internal
driving torque Md (control with driving). Thus, the torques acting on the body, the handlebar,
and the front wheel can be considered as

Mb =
⎡
⎣

0
0

−M s

⎤
⎦

F5

, Mh =
⎡
⎣

0
−Md

M s

⎤
⎦

F5

, Mf =
⎡
⎣

0
Md

0

⎤
⎦

F5

. (41)

By substituting all the above calculated kinematic quantities into Eq. (37), we get three
first-order differential equations for the pseudo velocities. These together with the seven
kinematic constraint equations expressed for the generalized velocities q̇k from Eq. (30)
form the system of nonlinear governing equations. Thus, altogether we have ten first-order
differential equations, namely the state space is ten-dimensional. Or, as often referred to, the
system is a 5 DoF dynamical system, see [27].

Due to the large number of parameters of the mechanical model and the complexity of
the governing equations, only semi-analytical calculations can be performed. Namely, we
consider parameter values for an existing e-scooter based on the data found in the literature
[12]. The parameters with their notations, names, and values are given in Table 1. Note that
the mass moment inertia values of the wheels about their rotational axes are smaller than
the values about their other two axes, which is unconventional. However, we rely on the
parameter values published in [12].

3 Control design

In order to balance the e-scooter in the vertical position, two different control strategies
are proposed in our study. For the controller designs, we use reduced models, namely, we
consider additional geometric constraints to reduce the complexity of the original model of
Sect. 2.

3.1 Control with steering

First, we try to balance the e-scooter by using the steering mechanism, i.e., applying steering
torque M s on the handlebar. In the meantime, the rotational speed of the front wheel is kept
at zero by considering φ̇f = 0, which leads to the geometric constraint φf ≡ 0. Consequently,
the front wheel is fixed to the handlebar, and φf is not a generalized coordinate anymore.
This can be considered for the kinematic constraints of rolling in Eq. (30) by deleting the
sixth column of the coefficient matrix (31). Namely, only two pseudo velocities are required
to describe the motion of the system. Let us use our former choice and keep σ1 = ϕ̇ and
σ2 = δ̇. Then, one can use the algorithm of Sect. 2.5 to determine the equations of motion of
the reduced system, where the vector of state variables is

x = [
ϕ δ

]T
. (42)
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Table 1 Parameters of the e-scooter

Notation Parameter name Value

p wheelbase 0.829 m

e trail 0.0281 m

ε rake angle 14.2◦
g gravitational acceleration 9.81 m/s2

R wheel radius 0.111 m

front wheel

mf mass 2.894 kg

JF mass moment of inertia in F5

⎡
⎢⎣

0.01134 0 0

0 0.00628 0

0 0 0.01134

⎤
⎥⎦kg m2

rear wheel

mr mass 1.136 kg

JR mass moment of inertia in F3

⎡
⎢⎣

0.00536 0 0

0 0.0029 0

0 0 0.00536

⎤
⎥⎦kg m2

body

mb mass 9.5 kg

JB mass moment of inertia in F3

⎡
⎢⎣

0.1014 0 −0.1074

0 0.4374 0

−0.1074 0 0.3561

⎤
⎥⎦kg m2

rRB center of gravity [0.4314,0,0.0782]T m

handlebar

mh mass 2.797 kg

JH mass moment of inertia in F5

⎡
⎢⎣

0.341171 0 0.151596

0 0.4018 0

0.151596 0 0.0840292

⎤
⎥⎦kg m2

rKH center of gravity [0.01,0,0.2716]T m

b length 0.2418 m

d offset 0 m

For the linear stability of the rectilinear motion of the e-scooter, the nonlinear governing
equations are linearized around the steady state x(t) ≡ x0. We consider x0 = 0, namely

ϕ(t) ≡ ϕ0 = 0 , (43)

δ(t) ≡ δ0 = 0 . (44)

To simplify the derivation of the linearized equation of motion, one can use an approxi-
mation for the pitch angle instead of using the analytical solution of Eq. (25). Namely, the
Taylor-series of the pitch angle reads

ϑ = c00 + c10ϕ + c01δ + c20ϕ
2 + c02δ

2 + c11ϕδ + h.o.t. (45)
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By taking the Taylor-series of the constraint equation (25), coefficients cij up to the second
degree can be determined as

c00 = c10 = c01 = c20 = 0 , c02 = e

4p
sin 2ε , c11 = − e

p
cos ε , (46)

thus, the approximation of the pitch angle is obtained as

ϑ ≈ e

4p
δ2 sin 2ε − e

p
ϕδ cos ε . (47)

In Fig. 3(b), the surface corresponding to the geometric constraint (25) is shown with blue
color. The surface corresponding to the approximation (47) of ϑ is also plotted by red. As
can be seen, the approximation is acceptable for small steering and lean angles. Moreover,
this approximation provides the exact linearized equations of motion, since higher-order
terms do not influence the linear part at the end of the derivation process.

Using the perturbation x̃(t) = x(t) − x0 around the steady state, the linearized equations
of motion can be written as

M ¨̃x(t) + Kx̃(t) = Q(t) , (48)

where M is the mass matrix, K is the stiffness matrix, and Q(t) = [
0 M s

]T
is the vector

of generalized forces. We also take into account the feedback delay of the controller by
time delay τ . Of course, the above-described governing equations agree with the linear
benchmark model in [17] for zero forward speed. The mass and the stiffness matrices are
given numerically for the e-scooter of Table 1 in Appendix A.

As a first approach, we use a cascade controller. Namely, a higher-level controller calcu-
lates the desired steering angle as

δdes = −K s
pϕϕ(t − τ) − K s

dϕϕ̇(t − τ) , (49)

where K s
pϕ and K s

dϕ are proportional gains for the lean angle and lean rate, respectively. This
control law assumes that the sensors and actuators of an e-scooter have feedback delay τ ,
that is, actuation does not happen immediately. Namely, we only have information about the
lean angle and the lean rate τ time after the exact time of the measurement of these quanti-
ties. Note that the accurate measurement of the lean angle is a complicated task, which may
limit the use of our controller. However, nowadays, more and more micromobility vehicles
such as electric unicycles and segways are on the roads, in which the tilt/lean angle control
is solved similarly like in our study, see [3, 15]. With this control, we want to drive the steer-
ing angle to the desired value and the steering rate to zero. Therefore, the internal steering
torque M s is created by a lower-level control law as

M s = −K s
pδ (δ(t) − δdes) − K s

dδ δ̇(t) , (50)

where K s
pδ and K s

dδ are proportional gains for the steering angle and steering rate, respec-
tively. We assume that the time delay in the lower-level controller is negligible compared
to the time delay in the higher-level controller. By applying the control laws described in
Eqs. (49)-(50), the vector of generalized forces can be written as

Q(t) = D ˙̃x(t) + Px̃(t) + Dτ
˙̃x(t − τ) + Pτ x̃(t − τ) , (51)
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where the matrices are

D =
[

0 0
0 −K s

dδ

]
, P =

[
0 0
0 −K s

pδ

]
, (52)

Dτ =
[

0 0
−K s

pδK
s
dϕ 0

]
, Pτ =

[
0 0

−K s
pδK

s
pϕ 0

]
. (53)

Hence, the linearized equations of motion can be written as

M ¨̃x(t) − D ˙̃x(t) + (K − P)x̃(t) = Dτ
˙̃x(t − τ) + Pτ x̃(t − τ) (54)

by arranging the non-delayed terms on the left-hand side and the delayed terms on the right-
hand side.

In order to investigate the linear stability properties, one has to construct the characteristic
equation of the system. By using the exponential trial solution x̃(t) = a eλt with characteris-
tic exponent λ, we obtain the characteristic function of the system as

Dchar(λ) := det
(
Mλ2 − Dλ + (K − P) − (Dτ λ + Pτ ) eλ(−τ)

)
. (55)

3.1.1 Control with steering without time delay

As a first step, we consider zero feedback delay, i.e., τ = 0. Thus, the characteristic function
can be formulated as a simple polynomial:

Dchar(λ) := det
(
Mλ2 − Dλ + (K − P) − (Dτ λ + Pτ )

)

= b0λ
4 + b1λ

3 + b2λ
2 + b3λ + b4 .

(56)

In this case, the stability boundaries can be analyzed semi-analytically. The stability criteria
lead to complicated formulas, therefore they are not spelled out in the paper. The linear
stability properties are shown for parameter values of Table 1. According to the Routh-
Hurwitz stability criteria, all coefficients of the characteristic equation Dchar(λ) = 0 and the
third principal minor H3 = b3(b1b2 −b0b3)−b2

1b4 of the Hurwitz matrix have to be positive.
It can be shown, that the coefficients of the characteristic equation are

b0 = det M , (57)

b1 = 1.8061K s
dδ − 0.035073K s

pδK
s
dϕ , (58)

b2 = −5.8765 + 1.8061K s
pδ − 0.035073K s

pϕK
s
pδ , (59)

b3 = −38.790K s
dδ − 3.0112K s

pδK
s
dϕ , (60)

b4 = 19.585 − 38.790K s
pδ − 3.0112K s

pϕK
s
pδ . (61)

In the linear stability chart of Fig. 4(a), the stability boundaries and the stable region
are plotted in the plane of control gains K s

pϕ and K s
dϕ . The lower-level control gains are

fixed to K s
pδ = 10 Nm and K s

dδ = −5 Nms based on detailed analysis explained later in
Sect. 3.1.3. The criterion b0 > 0 is always fulfilled, since the determinant of the mass matrix
is always positive. As can be seen in Fig. 4(a), the stability boundaries corresponding to
b1 = 0, b2 = 0, b3 = 0 and b4 = 0 are horizontal and vertical lines for fixed parameters and
lower-level control gains. In more details, the criteria b1 > 0 and b3 > 0 define a maximum
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Fig. 4 Stability boundaries and the stable region for fixed parameters of Tab. 1 and fixed lower-level control
gains: Ks

pδ = 10 Nm and Ks
dδ

= −5 Nms. (a) For the non-delayed controller (τ = 0) and (b) for feedback
delay τ = 0.01 s.

value for the derivative control gain K s
dϕ . Similarly, the criteria b2 > 0 and b4 > 0 define

a maximum value for the proportional control gain K s
pϕ . All in all, the stable domain is

restricted to a quarter-plane. Note, that coefficients (57)-(61) also allow the use of higher-
level control gain setup from the first quadrant if the lower-level control gains are fixed to
different values than in our study (see Sect. 3.1.3). The curve corresponding to H3 = 0 is
also marked in the figure. It can be shown, that the stable region is the gray shaded area.

Based on the linear stability chart of the zero delay case, one can choose the higher-level
control gains appropriately. Namely, by choosing higher-level control gains from the stable
region, the vertical position of the e-scooter is linearly stable. Let us now investigate the
effect of the feedback delay on the stability.

3.1.2 Control with steering with time delay

For a delayed controller, i.e., τ > 0, the characteristic equation Dchar(λ) = 0 is transcenden-
tal due to the presence of the exponential terms related to the delay. However, the stability
boundaries can be determined, where pure complex characteristic roots are situated on the
imaginary axis of the complex plane. In our study, we use the D-subdivision method, thus,
we substitute λ = iω into the characteristic equation and separate the real and imaginary
parts:

Re (Dchar(iω)) = 0 , (62)

Im (Dchar(iω)) = 0 , (63)

where i is the imaginary unit. The stability boundaries can be analyzed numerically, e.g.,
with the help of the Multidimensional Bisection Method [1]. Namely, the angular fre-
quency ω is swept, while Eqs. (62)-(63) are solved for a range of control gains Ks

pϕ and K s
dϕ .

As a result, the stability boundaries are obtained, which can correspond to static (ω = 0) and
dynamic (ω > 0) loss of stability.

The stability boundaries of the linearized system are shown with solid black curves in
Fig. 4(b), in the plane of control gains K s

pϕ and K s
dϕ and for feedback delay τ = 0.01 s.
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Fig. 5 Stabilizability plot: the
real part of the rightmost
characteristic root Reλmax for
lower-level control gain pairs
(Ks

pδ , Ks
dδ

) (color figure online)

The parameters and the lower-level control gains are fixed and the stability boundaries are
plotted for angular frequency ω ∈ [0,125] rad/s. One can observe a static stability boundary
(ω = 0) at approximately K s

pϕ = −12.23, see the vertical line. The curve corresponding to
dynamic loss of stability is also plotted, together with the direction of increasing angular
frequency ω.

However, the stability properties of the different regions of the stability chart cannot
be determined unambiguously in all of the possible cases. Therefore, it is convenient to
use semi-discretization [8] to obtain the stable regions and confirm the results of the D-
subdivision. In Fig. 4(b), the unstable and the stable regions, obtained by semi-discretization,
are indicated by white and gray areas, respectively. Inside the stable region, the optimum
point is also plotted with a black cross, for which the rightmost characteristic root, denoted
by λmax, has the smallest real part. Namely, for this control gain setup, the linear system
shows the best robustness against perturbations. In the figure, we also plotted the stability
boundaries of the delay-free case. As shown, even a small delay significantly reduces the
size of the stable domain, which however shifts into the domain that is linearly unstable
without delay.

3.1.3 Proper choice of the lower-level control gains

In the previous subsections, the lower-level control gains K s
pδ and K s

dδ were fixed. However,
they were not chosen randomly, but with optimization with the subject of having the smallest
real part of the rightmost characteristic root.

For different lower-level control gain pairs (K s
pδ , K s

dδ), stability charts were constructed
by semi-discretization in the plane of the higher-level control gains and the optimum points
were obtained. Then, a so-called stabilizability plot was constructed, namely the real part of
the rightmost characteristic exponent Reλmax, related to the optimum point is plotted in the
plane of the lower-level control gains K s

pδ and K s
dδ , see Fig. 5.

Based on the stabilizability plot, one can easily select which lower-level control gains are
appropriate to stabilize the vertical position of the e-scooter. We applied a coloring in Fig. 5:
dark blue domains refer to the gain setups where the best performance can be achieved with
respect to the decay of the vibrations; colors from cyan to red correspond to non-stabilizable
regions. The stability boundary is also highlighted by the solid black curve.

Based on these calculations, the optimal lower-level control gain pair is Ks
pδ = 10 Nm

and K s
dδ = −5 Nms, which is also marked in the figure with a black cross. The stability

charts are shown for certain lower-level control gain pairs in Fig. 6. As can be seen, the
stable region can be either in the first or in the third quadrant. Note that the size of the stable
region is not the greatest for the optimal lower-level control gain pair.
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Fig. 6 Stability charts and the real part of the rightmost characteristic roots for certain (Ks
pδ , Ks

dδ
) lower-level

control gain pairs. The borders of the stability chart for the optimal lower-level control gain pair are thickened

3.1.4 The effect of time delay, rake angle, trail and mass distribution on the linear
stability

With the proper choice of lower-level control gains for a fixed parameter setup, one can
investigate the effect of different parameters on linear stability. According to previous re-
search, the feedback delay τ , the rake angle ε, the trail e and the location xKH of the center
of gravity H have significant effects on the linear stability properties. Hence, we analyze
their effect by constructing linear stability charts and investigating the real part of the right-
most characteristic roots. In the linear stability charts, the stability boundaries are shown in
the plane of the control gains K s

pϕ and K s
dϕ . The gray and the white areas correspond to lin-

early stable and unstable vertical positions, respectively; the different shades of gray relate
to different parameter values.

As it can be observed in Fig. 7, the feedback delay influences the linear stability prop-
erties significantly. Compared to the delay-free case, marked with a black dashed line in
Fig. 7(a), the linearly stable domain is much smaller in the presence of time delay. In ad-
dition, the stable domain shrinks considerably with the increasing value of the time delay.
Based on Fig. 7(b), the real part of the rightmost characteristic root Reλmax is negative for
τ < 0.0165 s. The optimum value for the feedback delay is approximately τ = 0.0095 s.

The linear stability charts are shown for different rake angles and trail values in Fig. 8,
for feedback delay τ = 0.01 s. The panel in the middle with thick frame corresponds to the
reference setup of [12] with rake angle ε = 14.2◦ and trail e = 0.0281 m. Linear stability
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Fig. 7 The effect of the feedback delay on the linear stability for fixed parameters (see Tab. 1) and for fixed
lower-level control gains (Ks

pδ = 10 Nm and Ks
dδ

= −5 Nms). (a) Linear stability charts obtained by semi–
discretization for four different values of the feedback delay. (b) The real part of the rightmost characteristic
roots as a function of the feedback delay

Fig. 8 The effect of the rake angle and the trail on the linear stability. Linear stability charts, the real part of
the rightmost characteristic roots, and the value of the fork offset for different values of the rake angle and
the trail and for τ = 0.01 s.

charts are drawn for ±20% of the rake angle and the trail in order to investigate the effect
of these geometric parameters. The optimal case, in which the real part of the rightmost
characteristic root is the smallest, is also marked with a black cross in each stability chart. In
addition, the value of the fork offset d is also indicated. As it can be observed, the linearly
stable domain, marked with gray, is shifted and expanded by increasing the parameter values
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Fig. 9 The effect of the center of gravity of the handlebar on the linear stability for fixed parameters (see
Tab. 1) and for fixed lower-level control gains (Ks

pδ = 10 Nm and Ks
dδ

= −5 Nms). (a) Linear stability charts
obtained by semi-discretization for six different values of the center of gravity of the handlebar. (b) The real
part of the rightmost characteristic roots by means of the center of gravity of the handlebar

of the rake angle and the trail. Despite the fact that the stable domain is not the largest for
the reference system, the real part of the rightmost characteristic root is the smallest for it.

The feasible value of the feedback delay τ depends on the sensors and actuators in the
control loop. In addition, the value for the rake angle ε and the trail e is constrained by
the design process of e-scooters. With these limitations, it is convenient to find a parameter,
which can be varied independently from the other parameters of the e-scooter and has a
significant effect on the linear stability. An easily variable geometric parameter is the center
of gravity of the handlebar xKH. As it can be observed in Fig. 9(a), the more the center of
gravity of the handlebar afore the steering axis is, the greater the linearly stable region is.
However, there is a limit to the parameter value. Namely, based on Fig. 9(b), the vertical
position can be stabilized, i.e., the real part of the rightmost characteristic root Reλmax is
negative for xKH < 0.0277 m. The optimum value for the center of gravity of the handlebar
is approximately xKH = 0.0106 m.

3.2 Control with driving

As another solution, we try to balance the e-scooter by turning the front wheel into a π/2
steering angle position and by applying internal driving torque Md on the axis of the front
wheel. Thus, our balancing task became similar to the self-balancing problem of segways
[15, 41], or to the Furata pendulum balancing problem [37, 38]. Since the steering angle
is fixed (i.e., δ ≡ π/2), the steering rate is zero (i.e., δ̇ = 0). This provides an additional
geometric constraint, and the steering angle δ is not a generalized coordinate in this reduced
system. However, the kinematic constraints of rolling in Eq. (30) still hold after deleting the
fifth column of the coefficient matrix (31). Namely, only two pseudo velocities are required,
and the equations of motion of the reduced system can be derived based on Sect. 2.5. For
this case, let us choose σ1 = ϕ̇ and σ2 = φ̇f. The vector of state variables is now

x = [
ϕ φf

]T
. (64)

In order to preserve the symmetry of the system, we assume that the center of gravity
of the handlebar is on the axis of the handlebar (xKH = 0) and we consider zero fork offset
(d = 0). Based on Eq. (1), the trail can be calculated for this case as

e = R tan ε . (65)
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The nonlinear equations are linearized around the steady state x(t) ≡ 0, namely

ϕ(t) ≡ ϕ0 = 0 , (66)

φf(t) ≡ φf,0 = 0 . (67)

We again approximate the pitch angle with a second-degree expression in order to simplify
the calculations of the linearized equations of motion:

ϑ = c0 + c2ϕ
2 + h.o.t. , (68)

where

c0 =: ϑ0 = arccos
R2 cos ε + (R sin ε + p)

√
2Rp sin ε + p2

R2 + 2Rp sin ε + p2
, (69)

c2 = −1

2

R + R sin(ε − ϑ0) tan(ε − ϑ0) − p sinϑ0

R sin(ε − ϑ0) + p cosϑ0
. (70)

In order to verify our approximation, the relation between the lean and the pitch angles is
shown in Fig. 3(c). The black curve depicts the section at δ = π/2 of the surface correspond-
ing to the geometric constraint (25). The red curve shows the approximation (68) between
the lean and the pitch angles. As it can be observed, the approximation is precise in case of
small lean angles.

The linearized equations of motion can be written similarly as in Eq. (48) with Q(t) =[
0 Md

]T
. The mass and the stiffness matrices are given numerically for the parameters of

Table 1 in Appendix B. Note that φf is a cyclic coordinate of the open-loop system.
Again, as a first approach, we use a cascade controller. Namely, a higher-level controller

calculates the desired front wheel angle as

φf,des = −Kd
pϕϕ(t − τ) − Kd

dϕϕ̇(t − τ) , (71)

where τ is the feedback delay in the controller, Kd
pϕ and Kd

dϕ are proportional gains for
the lean angle and lean rate, respectively. The internal driving torque Md is created by a
lower-level control as

Md = −Kd
pφf

(
φf(t) − φf,des

) − Kd
dφf

φ̇f(t) , (72)

where Kd
pφf

and Kd
dφf

are proportional gains for the front wheel angle and front wheel rate,
respectively. We again assume that the time delay in the lower-level controller is negligible
compared to the time delay in the higher-level controller.

By applying the control laws described in Eqs. (71)–(72), the vector of generalized forces
can be written similarly as in Eq. (51) with the matrices

D =
[

0 0
0 −Kd

dφf

]
, P =

[
0 0
0 −Kd

pφf

]
, (73)

Dτ =
[

0 0
−Kd

pφf
Kd

dϕ 0

]
, Pτ =

[
0 0

−Kd
pφf

Kd
pϕ 0

]
. (74)
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Fig. 10 Stability boundaries and the stable region for fixed parameters of Tab. 1 and for fixed lower-level
control gains: Kd

pφf
= −145 Nm and Kd

dφf
= −30 Nms. (a) For the non-delayed controller (τ = 0) and (b)

for feedback delay τ = 0.001 s.

3.2.1 Control with driving without time delay

By considering zero feedback delay, i.e., τ = 0, the stability boundaries can be analyzed
analytically. In this case, for parameter values of Table 1, the coefficients of the characteristic
polynomial Dchar(λ) = 0 are

b0 = det M , (75)

b1 = 1.9041Kd
dφf

+ 0.29862Kd
dϕK

d
pφf

, (76)

b2 = −3.5433 + 1.9041Kd
pφf

+ 0.29862Kd
pϕK

d
pφf

, (77)

b3 = −35.248Kd
dφf

, (78)

b4 = −35.248Kd
pφf

. (79)

The Routh–Hurwitz criteria are then the following. The criterion b0 > 0 is always fulfilled,
since the determinant of the mass matrix is always positive. The criteria b3 > 0 and b4 > 0
restrict the lower-level control gains to negative values. Namely, the criterion b3 > 0 implies
that Kd

dφf
< 0 and the criterion b4 > 0 corresponds to Kd

pφf
< 0. The criterion b1 > 0 defines

a maximum value for the derivative control gain Kd
dϕ . Similarly, the criterion b2 > 0 defines

a maximum value for the proportional control gain Kd
pϕ . All in all, the stable domain is

restricted to a quarter-plane.
In the linear stability chart of Fig. 10(a), the stability boundaries and the stable region are

plotted in the plane of control gains Kd
pϕ and Kd

dϕ . The lower-level control gains are fixed
to Kd

pφf
= −145 Nm and Kd

dφf
= −30 Nms based on detailed analysis explained later in

Sect. 3.2.3. The curve corresponding to H3 = 0 is also marked in the figure. It can be shown
that the stable region is the gray-shaded area.

3.2.2 Control with driving with time delay

In the presence of feedback delay, the linear stability charts are constructed with the D-
subdivision method and with semi-discretization. The stability boundaries of the linearized
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Fig. 11 Stabilizability plot: the
real part of the rightmost
characteristic root Reλmax for
lower-level control gain pairs
(Kd

pφf
, Kd

dφf
) (color figure

online)

system are shown with solid black curves in Fig. 10(b), in the plane of the control gains
for feedback delay τ = 0.001 s. The parameters and the lower-level control gains are fixed
and the stability boundaries are plotted for the angular frequency ω ∈ [0,1100] rad/s. In the
figure, the unstable and the stable regions, obtained by semi-discretization, are indicated by
white and gray areas, respectively. Inside the stable region, the optimum point is also plotted
with a black cross. Note that the stable region is much smaller compared to the delay-free
case marked with H3 = 0. It is also worth mentioning, that the optimum point is located
close to the stability boundary.

3.2.3 Proper choice of the lower-level control gains

The lower-level control gains Kd
pφf

and Kd
dφf

were chosen based on similar calculations as for
the control with steering case. Namely, semi-discretization was performed for lower-level
control gain pairs, the characteristic exponents were calculated and the optimum points were
obtained. The stabilizability plot can be seen in Fig. 11.

As can be seen in Fig. 11, the real part of the rightmost characteristic root is negative for
the whole domain, i.e., the motion is stabilizable for all investigated lower-level control gain
pairs. The minimal of Reλmax corresponds to Kd

pφf
= −145 Nm and Kd

dφf
= −30 Nms. This

optimal control gain pair is also marked in the figure with a black cross.

3.2.4 The effect of time delay, rake angle and mass distribution on the linear stability

In the case of control with driving, we investigate the effect of the time delay τ , the rake
angle ε and the vertical position zKH of center of gravity of the handlebar on the linear
stability. In the linear stability charts, the stability boundaries are shown in the plane of
the control gains. The gray and the white areas correspond to linearly stable and unstable
motion, respectively; the different shades of gray relate to different parameter values.

As can be observed in Fig. 12(a), the linearly stable domain is much smaller in the pres-
ence of time delay. In addition, the larger the value of time delay is, the smaller the stable
region is. The motion is stabilizable, i.e., the real part of the rightmost characteristic root
is negative for τ < 0.00175 s, see Fig. 12(b). The optimum value for the feedback delay
is approximately τ = 0.0011 s. All this means, that the critical time delay is much smaller
when the control is done by the driving torque than when the steering is used. The very small
critical time delay values may correspond to the fact that we used a hierarchical controller
in our study. A one-level direct control of the driving torque based on the lean angle/rate and
front wheel angle/rate could tolerate a larger time delay, see [7, 19, 41].

For the control with driving case, we considered zero fork offset for the e-scooter. There-
fore, according to Eq. (65), the trail depends on the rake angle. Thus, the effect of the rake
angle and the trail can only be investigated together. The linear stability charts are shown for
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Fig. 12 The effect of the feedback delay on the linear stability for fixed parameters (see Tab. 1) and for fixed
lower-level control gains (Kd

pφf
= −145 Nm and Kd

dφf
= −30 Nms). (a) Linear stability charts obtained

by semi-discretization for three different values of the feedback delay. (b) The real part of the rightmost
characteristic roots by means of the feedback delay

Fig. 13 The effect of the rake
angle and the trail on the linear
stability. Linear stability charts
and the real part of the rightmost
characteristic roots for different
values of the rake angle (thus, for
different values of the trail) and
for τ = 0.001 s

Fig. 14 The effect of the center of gravity of the handlebar on the linear stability for fixed parameters (see
Tab. 1) and for fixed lower-level control gains (Kd

pφf
= −145 Nm and Kd

dφf
= −30 Nms). (a) Linear stability

charts obtained by semi-discretization for five different values of the center of gravity of the handlebar. (b)
The real part of the rightmost characteristic roots by means of the center of gravity of the handlebar

different rake angle values in Fig. 13, for feedback delay τ = 0.001 s. On the one hand, the
stable region and the real part of the rightmost characteristic root are the largest for ε = 14.2◦

and e = 0.0281 m (i.e., for the reference parameters). On the other hand, theoretically, there
exists a considerable stable region for zero and even negative trail values.

An easily variable geometric parameter is the vertical location zKH of the center of grav-
ity of the handlebar. It can be seen in Fig. 14(a), that the higher the center of gravity of the
handlebar, the larger the stable domain. This effect is well-known in the literature, e.g., the
analysis of human balancing provides similar results, see [9, 18, 33]. Higher center of gravity
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positions allow the use of a larger time delay in the loop. However, the real part of the right-
most characteristic root is smaller for lower center of gravity positions, see Fig. 14(b). The
optimum value for the location of the center of gravity is approximately zKH = 0.1212 m.

4 Nonlinear simulations

We designed the controllers for the two different control strategies by means of simplified
mechanical models. Namely, we assumed zero rotational speed (φf ≡ 0) for the front wheel
when the balancing is achieved with steering and we used a fixed steering angle (δ ≡ π/2)
assumption when the vertical position is stabilized by the driving of the front wheel. How-
ever, driving and steering controllers realize these additional geometric constraints in reality.

To check the performance of the control algorithms we designed in Sects. 3.1 and 3.2,
we perform nonlinear simulations on the general model described in Sect. 2. In order to gain
some knowledge about large amplitude vibrations, we use the nonlinear governing equations
of Eq. (37) together with formulas of the generalized velocities q̇k determined by solving of
Eq. (36). Thus, the state variables form the following vector:

xfull =
[

q σ
]T = [

X Y ψ ϕ δ φf φr σ1 σ2 σ3
]T

. (80)

4.1 Nonlinear simulations: control with steering

For the sake of simplicity, Explicit Euler method was used with fixed time step of 5 · 10−5 s.
The initial condition was xfull(t) = 0 for t ∈ [−τ,0) and

xfull(0) = [
0 0 0 0 0 0 0 ω0 0 0

]T
, (81)

where ω0 := ϕ̇(0) = 0.025 rad/s, namely, an impact-like perturbation was applied via the
non-zero lean rate of the e-scooter. The desired steering angle and the internal steering torque
were calculated as in Eqs. (49)–(50). Without fixing the front wheel to the handlebar and
fork assembly according to Sect. 3.2, driving torque Md = −K s

pφf
φf(t)−K s

dφf
φ̇f(t) was also

applied to force the front wheel to φf(t) = 0 and φ̇f(t) = 0.
The results of the simulation are shown in Fig. 15. Even though the longitudinal and

lateral movement and the yaw motion of the e-scooter are not controlled, the positions (X
and Y ) and the yaw angle (ψ ) remain small. More importantly, the lean angle is also small,
while the steering angle exceeds 0.2 rad. Since the longitudinal speed of the e-scooter is not
prescribed in this general model, the front wheel also moves, but the controller stabilizes
it at the desired zero position. The lean, steering and front wheel rates decay in time. The
steering controller designed based on our linear analysis performs well also in the case of
large steering angles.

4.2 Nonlinear simulations: control with driving

The same numerical method was used with a time step of 5 · 10−5 s for this simulation. The
initial condition was xfull(t) = [

0 0 0 ϕ0 π/2 0 0 0 0 0
]T

for t ∈ [−τ,0)

and the same impact-like perturbation was applied for the lean rate of the e-scooter

xfull(0) = [
0 0 0 ϕ0 π/2 0 0 ω0 0 0

]T
, (82)
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Fig. 15 Nonlinear simulation results for the control with steering case: the time graphs for the state variables.
Parameter values as in Tab. 1, τ = 0.01 s, control gains: Ks

pδ = 10 Nm, Ks
dδ

= −5 Nms, Ks
pϕ = −252.53,

Ks
dϕ

= −37.47 s, Ks
pφf

= 10 Nm, Ks
dφf

= 1 Nms.

with ϕ0 = 9.244 · 10−3 rad and ω0 := ϕ̇(0) = 0.025 rad/s. The desired front wheel an-
gle and the internal driving torque were calculated as in Eqs. (71)–(72). Since the steer-
ing angle is not prescribed in this general model by any constraint, the steering torque
M s = −Kd

pδ(δ(t) − π/2) − Kd
dδ δ̇(t) was applied to hold δ(t) = π/2 and δ̇(t) = 0. Another

difference to the mechanical model used in Sect. 3.2 for the controller design is related to
the center of gravity of the handlebar. Namely, we consider non-zero value for the longitu-
dinal position xKH of the center of gravity H, which in case of δ = π/2 results in a non-zero
equilibrium for the lean angle (i.e., ϕ0 �= 0). Based on this, we modified the reference lean
angle value of higher-level control law (71) in simulations. The results of the nonlinear sim-
ulation are shown in Fig. 16. As it can be seen, the longitudinal and lateral positions and
the yaw angle remain small, even though these are not controlled. As it can be observed in
Fig. 16(c), at the end of the simulation, the lean angle converges to the steady-state ϕ0. The
lean, steering and front wheel rates decay in time. Thus, the designed controller performs
exactly as it is proposed by our linear stability analysis.

4.3 Nonlinear simulations: switch from control with steering to control with driving

To verify the feasibility of switching between the different control strategies, we also run
a simulation where we suddenly change from the steering control to the driving one. The
critical time delay was τ = 0.001 s for the control with driving case, hence simulations are
run with the control gains of the linear subsystems of Sects. 3.1 and 3.2 and τ = 0.001 s.
The simulation results are shown in Fig. 17. As can be seen, the switch occurs at t = 5 s.
The vertical position is stabilized by the controllers and the transient caused by the switch
is limited both in time and vibration amplitudes.
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Fig. 16 Nonlinear simulation results for the control with driving case: the time graphs for the state vari-
ables. Parameter values as in Tab. 1, τ = 0.001 s, control gains: Kd

pφf
= −145 Nm, Kd

dφf
= −30 Nms,

Kd
pϕ = −7.99, Kd

dϕ
= −1.39 s, Kd

pδ = 10 Nm, Kd
dδ

= 1 Nms.

Fig. 17 Nonlinear simulation results for the switch from control with steering to control with driving case:
the time graphs for the state variables. Parameter values as in Tab. 1, τ = 0.001 s, control gains for t < 5 s:
Ks

pδ = 10 Nm, Ks
dδ

= −5 Nms, Ks
pϕ = −252.53, Ks

dϕ
= −37.47 s, Ks

pφf
= 10 Nm, Ks

dφf
= 1 Nms, control

gains for t ≥ 5 s: Kd
pφf

= −145 Nm, Kd
dφf

= −30 Nms, Kd
pϕ = −7.99, Kd

dϕ
= −1.39 s, Kd

pδ = 10 Nm,

Kd
dδ

= 1 Nms.
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5 Conclusions and discussion

In this study, we designed two control algorithms to balance a riderless self-driven electric
scooter at zero forward speed. First, the e-scooter was balanced by using the steering mecha-
nism (control with steering). Next, the front wheel was turned to the steering angle π/2, and
driving torque was applied on the front wheel (control with driving) to stabilize the vertical
position. Simple linear state feedback controllers were implemented, and a careful analysis
was accomplished with respect to the effect of the time delay and geometric parameters of
the e-scooter.

Thanks to the optimization process, optimal control gains of the hierarchical controllers
were selected. The mass distribution of the handlebar and fork assembly was identified as a
key parameter by which the performance of the controllers can be tuned easily. Hence, other
geometric parameters (e.g. trail, rake angle) can be chosen with respect to another aspect
(like human handling). Nonlinear numerical simulations confirmed the effectiveness of the
proposed control algorithms. The feasibility of switching between the different controllers
was also verified. In future work, the validation of the theoretical results of this study will
be accomplished using a prototype self-driven e-scooter.

Appendix A

By considering the parameters given in Table 1 and the linearized equations of motion for
the control with steering case, the mass and the stiffness matrices read

M =
[

1.80613 0.0350729
0.0350729 0.111656

]
kg m2 , (83)

K =
[ −38.79 3.01123

3.01123 −0.738676

]
Nm . (84)

Appendix B

By considering the parameters given in Table 1 and the linearized equations of motion for
the control with driving case, the mass and the stiffness matrices read

M =
[

1.90414 −0.298616
−0.298616 0.100526

]
kg m2 , (85)

K =
[−27.2847 0

0 0

]
Nm . (86)
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